
SUPPLEMENTAL MATERIAL: SPATIOTEMPORAL PATTERN FORMATION OF

RHOGTPASES IN WOUND HEALING ON THE SURFACE OF A CELL

CORY M. SIMONA∗, EMILY M. VAUGHANB , WILLIAM M. BEMENTB , LEAH EDELSTEIN-KESHETA

A The University of British Columbia. 121-1984 Mathematics Road, Vancouver, BC Canada V6T 1Z2
B The University of Wisconsin, Madison

∗ CoryMSimon@gmail.com

Contents

S1. Assumed uniformity of cytosolic protein concentrations 2
S2. Steps in model assembly 3
S3. The switch bifurcation 7
S4. The full model 8
S5. Parameter Estimation 9
S6. In-silico experiment details 10
S7. Two-wound simulations 10
S8. No-flux boundary condition derivation 12
S9. A change of variables to solve a moving boundary problem 12
S10. The numerical method 13
S11. Scaling the intensity data for comparison to simulations 13
References 13

Date: December 11, 2012.

1



2 CORY M. SIMONA∗, EMILY M. VAUGHANB , WILLIAM M. BEMENTB , LEAH EDELSTEIN-KESHETA

S1. Assumed uniformity of cytosolic protein concentrations

Here we justify several assumptions from considerations of diffusion and reaction time scales.

• The bulk concentrations of Abr, Cdc42, and RhoA in the cytosol are approximately constant throughout
the wound healing process. The band of RhoGTPase activity surrounding the wound is at most 30 µm
thick, small by comparison to the oocyte diameter (around 1000 µm). Around 1 % of RhoGTPases are
active when a cell is in a resting state [1], and the activity is increased fourfold upon wounding only in
the small region surrounding the wound. Thus, the increase in RhoGTPase activity in the wounded area
has little effect on the total active RhoGTPase levels in the oocyte.
• Spatial concentration gradients of the cytosolic proteins near the plasma membrane surface surrounding

the wound are negligible. The rate of diffusion of RhoGTPases in the cytosol is approximately 100 times
that of the plasma membrane [2]. Inactive RhoGTPase recruited to the membrane and activated is
replenished by diffusion on a fast time scale relative to the reaction rate at the plasma membrane. The
reaction mean-free path (the average distance a molecule can travel before a collision that results in a
reaction) is given by:

(1) drmfp :=
√
Dτr,

for D the diffusion coefficient and τr the mean reaction time. As an example, for RhoA and parameter
values in Table 2, τr ≈ 1

(kr0+k1)[R] ≈ 10 s. Given a cytosolic diffusion rate of 10 µm2/s, we find that

drmfp ≈ 10 µm. Since the reaction mean-free path is on the order of the size of our domain, the
approximation that the cytosolic species are spatially homogeneous [3] is reasonable.
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S2. Steps in model assembly

Figure S1. (a) Each RhoGTPase Cdc42 and RhoA is in flux on and off the membrane at rates
A and I. The active forms (-GTP bound) are membrane bound. The GDIs (not explicitly
modeled) are responsible for sequestering the GTPases in the cytosol. (b) The sequence of
models leading us to the final model, where interactions are shown. Model 1 focuses on the
RhoA-Abr module separately. Model 2 considers RhoA, Cdc42, and Abr, but lacks the positive
feedback loop for Cdc42 that is in model 3.

The model was assembled in stages (Fig. S1) so as to test hypotheses about the interactions of the GTPases
with each other and with Abr. This allows us to reject inappropriate variants before selecting a plausible
candidate model that fits observations. We provide detail here. Using principles of parsimony and aiming to
account for each basic experimental outcome, we first consider a spatially uniform scenario, and use simple linear
and saturating kinetic terms (Michaelis-Menten and Hill functions). Based on the timescale of ≈ 1 min, we
neglect protein synthesis of the GTPases and Abr.

We model the spatiotemporal concentration of the membrane bound species as defined in Table 1. All
concentrations (in µM) at position x are total concentrations contained in a column of height dz and membrane
surface area da, where, for simplification, we approximate the cell surface locally as flat and thickness, dz, as
approximately constant. (See [4], Fig. 3 for a similar representation in a 2D cell simulation).

Models are tested for their ability to satisfy Properties 1 and 2 and those that fail are rejected. For complete-
ness, we reiterate those properties here:

• Property 1: The experimentally known crosstalk scheme between RhoA, Abr, and Cdc42 (shown in Fig.
3B, model 2) is present in the reaction kinetics.

• Property 2: The combination of terms should allow for both low and high RhoGTPase levels. This implies
the requirement for bistability (presence of two stable steady states). In the absence of a stimulus, cells
are in a low GTPase-activity, stable, resting steady state.

As a reminder to the reader, the quantities [R] and [C] are taken as constants.
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Table 1. Description of Quantities (PM is plasma membrane)

Variable Description Unit
[R] Concentration of inactive RhoA in the cytosol µM
[R∗](r, t) Concentration of active RhoA anchored to the PM µM
[C] Concentration of inactive Cdc42 in the cytosol µM
[C∗](r, t) Concentration of active Cdc42 anchored to the PM µM
[AR∗](r, t) Concentration of Abr-bound active RhoA anchored to the PM µM

S2.1. The RhoA and Abr Module Reaction Kinetics. Abr has a tight spatiotemporal correlation with
active RhoA and, upon C3 exotransferase inhibition of RhoA, Abr recruitment was completely suppressed [5].
This suggests that active RhoA holds the primary responsibility for recruiting Abr to the membrane. We
differentiate between active RhoA that is unbound or bound to Abr so that the total active RhoA on the surface
at a point is [R∗](r, t) + [AR∗](r, t).

S2.1.1. Model 1a. Our first model for active and Abr-bound active RhoA is

d[R∗]

dt
= (kr0 + k1[AR∗])[R]− k2[R∗]− k3[R∗],(2)

d[AR∗]

dt
= k3[R∗]− k4[AR∗].

Here k3 = k̂3[A] for some k̂3 where [A] is the cytosolic Abr concentration (not explicitly modeled). The term
k3[R∗] is the rate at which binding occurs, k2[R∗] is loss of active RhoA through GAP-mediated inactivation and
k4[AR∗] is rate of inactivation of Abr-bound active RhoA. About the rate of Rho activation, we took the linear
form Arho = kr0 + k1[AR∗], where kr0 is a basal rate of Rho activation due to other background GEF activity [6]
and k1[AR∗] is an Abr-mediated GEF activation rate.

We solve for steady states of Eqs. 2 (d[R∗]/dt = d[AR∗]/dt = 0), represented by superscripts SS . We find that
there is a single steady state

(3) [R∗]SS =
k4k

r
0[R]

k4(k2 + k3)− k1k3[R]
.

From the fact that Model 1a has a unique steady state for [R∗], it fails Property 2 and is rejected.

S2.1.2. Model 1b. We modified the model by assuming a saturating rate of Rho activation with respect to Abr

(4) Arho := kr0 +
k1[AR∗]n

Kn
A + [AR∗]n

.

Then n = 1 corresponds to Michaelis-Menten kinetics, n > 1 to a Hill coefficient. Larger n correspond to sharper
response. The model equations are then

d[R∗]

dt
=

(
kr0 +

k1[AR∗]n

Kn
A + [AR∗]n

)
[R]− k2[R∗]− k3[R∗],(5)

d[AR∗]

dt
= k3[R∗]− k4[AR∗].

It is straightforward to show that n ≥ 2 is required for bistability. This can be seen by plotting the curve that
corresponds to d[R∗]/dt = 0 (the [R∗] nullcline) together with the curve for d[AR∗]/dt = 0 (the [AR∗] nullcline)
in the [R∗]-[AR∗] plane (Fig. S2), and observing how these can intersect. For parameters in a suitable range, we
find three intersections, two of which are the high and low stable steady state values of [AR∗] and [R∗] (Property
2). Regarding Property 1, once spatial terms are added, the form for Aabr allows for Abr to be locally recruited
to regions where active RhoA is high. The GEF activity of Abr is modeled in Arho. Thus, Property 1 and 2 are
satisfied and we keep the model in Eqns. 5 for the RhoA-Abr module.
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Figure S2. A caricature of RhoA and Abr nullclines of Eqns. 5. Each intersection of the
nullclines is a steady state value. Both the high and low steady states have a basin of attraction,
and either RhoA or Abr, or both, have to be pushed high enough to breach the separating border
“threshold” (separatrix). Parameters are chosen in a way that gives realistic steady state values.

S2.2. The Cdc42 Module Reaction Kinetics. We next include Cdc42, which essentially reacts to the RhoA-
Abr module.

S2.2.1. Model 2. As before, our default option is to consider linear GEF-mediated activation, Acdc = kc0+k5[AR∗],
where kc0 is a basal level due to GEFs known to exist [6] aside from Abr. We also assume a linear inactivation
rate Icdc := k7 + k8[AR∗], with k7 the basal rate and k8[AR∗] the Abr-mediated rate. This leads to the equation

(6)
d[C∗]

dt
= (kc0 + k5[AR∗])[C]− (k7 + k8[AR∗])[C∗],

whose steady state is,

(7) [C∗]SS =
(kc0 + k5[AR∗])[C]

k7 + k8[AR∗]
.

Recall that outside the RhoA zone, [AR∗] is near its low, resting steady state value. However, Cdc42 activity
can take on both low and high values. This is not possible for Eqn. 6, whose steady state is unique for a given
value of [AR∗], leading us to reject this model.

S2.2.2. Model 3a. Nonlinear kinetics in Acdc or Icdc as a function of [AR∗] or [R∗] will not suffice in generating
the Cdc42 pattern since both a high and low level of Cdc42 activity are maintained outside of the RhoA zone
where [AR∗] is at a constant value. We therefore consider a form of Cdc42 autocatalysis, where Acdc is an
increasing function of [C∗]. We first test a linear autocatalysis term:

(8)
d[C∗]

dt
= (kc0 + k5[AR∗] + k6[C∗])[C]− (k7 + k8[AR∗])[C∗].

We find that the steady state

(9) [C∗]SS =
(kcdc0 + k5[AR∗])[C]

k7 + k8[AR∗]− k6[C]
,

is unique for a given [AR∗], and, as before, we reject this variant of positive feedback.
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S2.2.3. Model 3b. We finally adopt a saturating Hill-function term for the Cdc42 positive feedback, with the
equation

(10)
d[C∗]

dt
=

(
kc0 + k5[AR∗] +

k6[C∗]n

Kn
C + [C∗]n

)
[C]− (k7 + k8[AR∗])[C∗].

It is straightforward to show that for a given [AR∗] level and suitable parameter ranges, this equation exhibits
bistability. Thus, Cdc42 can have both high and low levels close to and far from the wound, respectively
(Property 2). We have also included all known interactions between RhoA, Cdc42, and Abr (Property 1). This
is the simplest model of the type capable of exhibiting Properties 1 and 2.
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S3. The switch bifurcation

Fig. S3 shows a sketch of the bifurcation diagram for the well-mixed system with respect to the parameter
kr0. The solid curves represent stable steady states, and the dashed curve is an unstable steady state that forms
a threshold for stimuli that can “flip the switch” between the two steady states [7]. For a parameter range, there
are two stable steady states (bistability). The bifurcation diagram was created by setting the kinetics for [R∗]
and [AR∗] in the differential Eqns. 5 to zero and solving the nonlinear system with Newton’s method as the
parameter kr0 changes in a loop. All three branches are found by choosing a suitably close initial guess in the
Newton solver inside the loop.
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Figure S3. Bifurcation diagram for active RhoA with respect to kr0 for the well-mixed system
in Eqns. 5. The bottom (top) solid curve is the low (high), stable steady state curve. The
middle dashed curve is the unstable steady state. The arrows indicate which steady state is
attained from various initial values of [R∗].

We include the spatial terms that model diffusion and advection due to the myosin-powered movement inward
toward the wound:

(11)
∂[G]

∂t
= ∇ · (D∇[G]− v[G]) + reaction,

where D is the diffusion coefficient and v is the advection velocity vector. With the reaction terms from the
well-mixed system outlined above, we can think of a reaction-diffusion-advection system as governed by the
switch bifurcation in Fig. S3 whose behavior is determined locally in space. In fact, a reaction diffusion equation
can be simulated as several well-mixed spatial compartments where molecules move between compartments due
to diffusion [8]. Thus, in a particular compartment that obeys the well-mixed kinetics we analyzed here, if the
concentration of RhoA is below [above] the threshold (dashed line), the concentration will have a tendency to
move to the low [high] steady state. This is the essence of ‘spatial bistability’, where the state that the system
is attracted to depends on the spatial location in question.
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S4. The full model

The full final model to be simulated is

∂[AR∗]

∂t
= ∇ · (D∇[AR∗]− v[AR∗]) + k3[R∗]− k4[AR∗],

∂[R∗]

∂t
= ∇ · (D∇[R∗]− v[R∗]) +

(
kr0 +

k1[AR∗]n

Kn
A + [AR∗]n

)
[R]− k2[R∗]− k3[R∗],

∂[C∗]

∂t
= ∇ · (D∇[C∗]− v[C∗]) +

(
kc0 + k5[AR∗] +

k6[C∗]n

Kn
C + [C∗]n

)
[C]− (k7 + k8[AR∗])[C∗],

where, under our assumption of radial symmetry, the spatial effects of diffusion and advection can be written as:

(12) ∇ · (D∇[G]− v[G]) =
1

r

∂

∂r

(
rD

∂[G]

∂r
+ rv[G]

)
.

We assume no-flux boundary conditions at the wound edge, and a basal steady state level far away from the
wound, that is

∂[AR∗]

∂r
=
∂[R∗]

∂r
=
∂[C∗]

∂r
= 0 at r = w(t),

[AR∗] = [R∗] = [C∗] = low, stable steady state values forr →∞.
(See also Section S8).

As the wound edge closes, it advects the membrane inwards. The advection velocity has only an inward radial
component vr(r). The equation of continuity on the plane is 1

r
∂
∂r (rvr) = 0 and implies that vr = vc

r for some
constant vc (which may be a function of time). We choose the vc such that the wound location data matches the
simulated wound location at the final time of simulation since the rate of wound closure drives the advection. The
velocity of the moving boundary is assumed to be w′(t) = −v(w(t)). More precisely, as the wound edge closes,
it advects the membrane inwards. Data for the advection velocity as a function of distance from the wound
is found in [9], but 3D effects are here, such as curvature effects and the z-ward ingression of the membrane.
Despite this, the profile appears to fit a 1

r dependence in [9].
The initial conditions for active RhoA ([AR∗] + [R∗]) and active Cdc42 are triangular-shaped peaks that

correspond to the intensity data at 48 seconds after wounding.
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S5. Parameter Estimation

Table 2. Parameters: + denotes ‘constrained via steady state values’

Parameter Interpretation Value Unit Source
kr0 Basal RhoA activation 0.009 s−1 + [10, 11, 1]
kc0 Basal Cdc42 activation 0.0015 s−1 + [10, 11, 1]
k1 Maximum GEF activity of Abr on RhoA 0.0232 s−1 + [10, 11, 1]
KA Measure of switch location in Hill eqn. 0.0082 µM intensity data
KC Measure of switch location in Hill eqn. 0.0546 µM intensity data
k2 GAP /GDI inactivation rate of RhoA 1 s−1 [10]
k3 Abr binding rate to RhoA 0.1 s−1

k4 GAP /GDI inactivation rate of Abr-RhoA 6/9 s−1 [10, 12]
k5 Abr GEF activity on Cdc42 1.2987 s−1 intensity data
k6 Maximum autocatalysis rate of Cdc42 0.0312 s−1 + [10, 11, 1]
k7 Background GAP /GDI inactivation rate of Cdc42 0.4741 s−1 [10]
k8 Abr GAP activity on Cdc42 127.3926 s−1 intensity data
vc Advection velocity parameter 1.1179 µm2/s wound location data
n Hill Coefficient 6

The following parameters provide rough estimates. At present, the model is qualitative rather than quantita-
tively precise. According to [10] based on data in [11] for fibroblasts, there is typically 3.1 µM RhoA and 2.4 µM
Cdc42 in a cell. According to [1], around 1% of total RhoGTPase is in the active form in a resting cell. Hence,
we use [R] = 3.1 µM and [C] = 2.4 µM and choose the parameter regime such that the low, basal steady state
value of [R∗] + [AR∗] and [C∗] is 0.03 µM and 0.02 µM, respectively. Upon wounding, local Cdc42 and RhoA
activity increases by 200-800%, and here we used a four-fold factor. Hence we identified a parameter regime that
yields ([R∗] + [AR∗])SSlow = 0.03 µM, ([R∗] + [AR∗])SShigh = 0.1 µM, [C∗]SSlow = 0.02 µM, and [C∗]SShigh = 0.1 µM.
In achieving these high and low steady-states, the parameters KA and KC are constrained to lie in a particular
interval (explaining ∗ in Table 2). See Fig. S2 for an interpretation of the high and low steady state values.

The membrane diffusion coefficient D is taken to be 0.1 µm2/s [2]. According to [13], the rate of GTP
hydrolysis of RhoA by GAP has been measured as 1.5 s−1 (similar to measurements reported in [14]), and
coupled with GDI sequestration rates, we take the GAP deactivation rate k2 = k7 + k8[AR∗]SSlow = 1 s−1 as in
[10]. Abr inhibits GTP dissociation in GTPases, and from Fig. 2 in [12], we estimate k4 = 2

3k2.
To obtain the appropriate estimated levels of observed high and low GTPase activity levels, we constrained

the parameters kr0, k1 for RhoA, and keffective0 := kc0 + k5[AR∗]SSlow and k6 for Cdc42. The parameter keffective0

represents basal Cdc42 rate of activation away from the wound.
The radial advection velocity of the membrane fluid is vr(r) = vc

r , and vc is chosen to yield a simulated wound
location that matches the wound location in the data at t = 30 s simulation time.

The parameters KC and KA determine the threshold concentration that must be breached in order to locally
switch the system into a high steady state from the basal state. Taking the initial condition from the intensity
data, we include these parameters that determine the threshold in the optimization routine that fits the simulated
profiles to the intensity data. To allow for a robust range of values that maintains the bistable property, we
used the Hill coefficient n = 6. (n = 2 works in a narrower range of parameters). Parameters k2, k4, and
k7 + k8[AR∗]SSlow are constrained by typical steady-state GTP hydrolysis rates, leaving the parameters k3, k5,
and k8, KA, and KC free. A least-squares nonlinear, constrained optimization routine in MATLAB (fmincon)
is used to fit the simulated concentration profiles to the intensity data at t = 30 using the threshold parameters
KA and KC as well as k3, k5. We set the ratio of k5

k8 ≈ 0.01 to determine k8 based on k5 in order to observe the
low levels of Cdc42 inside the Rho zone and obtain a fit.
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S6. In-silico experiment details

In each scenario, altering Abr has an effect, albeit a small one, on the background levels of the GTPases.
Thus, in each case, we recalculate the background levels [R∗]SSlow, [AR∗]SSlow and [C∗]SSlow and recalculate the
resting inactive global concentrations [R] and [C], which are treated as constants. This calculation is done by
assuming that the total amount of GTPase (active+inactive) in the cell is constant throughout the wounding
process and mutant protein overexpressions.

S6.1. Validation: Wild Type Abr Overexpression. We mimicked this manipulation of wildtype Abr over-
expression in silico by increasing the value of k3 in which the cytosolic concentration of Abr is embedded in
the mass action of RhoA-cytosolic Abr binding term (equivalent to increasing [A]). Increasing k3 by 20 %, the
Rho zone widens significantly and overtakes the Cdc42 zone, and high levels of Cdc42 are not observed (Fig. 6).
This can be understood from the fact that Abr microinjection results in a drop in the threshold value for Rho
(Fig. 7). The Cdc42 activation-inactivation curves show that the Cdc42 zone is less intense with more cytosolic
Abr. As the Rho zone broadens, it overtakes the Cdc42 zone with its high levels of Abr, suppressing the Cdc42
zone to its lower stable steady state that remains. With more extreme changes in k3, the Rho-Abr module loses
bistability and only a high steady state remains as the positive feedback from the Abr is too strong to maintain
a low steady state. The parameter k3 can be increased by a factor of 1.22 before the Rho-Abr module becomes
mono-stable at a high steady state.

S6.2. Validation: overexpression of GEF-dead Abr. Here, we model the GEF-dead Abr domain by de-
creasing k1 and k5 to 30 % of controls and model the overexpression of Abr by increasing k3 by 20 %. Neither
the RhoA nor Cdc42 zone can be sustained (Fig. 6B) because the model loses bistability for both RhoA and
Cdc42 under these parameter changes, and only the low steady states remain (Fig. 7).

S6.3. Validation: overexpression of GAP-dead Abr. The effects of GAP-dead Abr expression were repre-
sented by decreasing k8 to 75 % of its original value and increasing k3 by 20 % to represent the overexpression
of Abr. As shown in Fig. 6C, zones overlap and broaden in comparison to controls. The bottom panel shows
that the threshold switch value for RhoA and Cdc42 are both lower than in controls, resulting in the broadening
of the zones given the same height stimulus as in the control simulation. Beyond a certain level of GAP-dead
Abr overexpression, the RhoA-Abr nullclines have only one intersection, resulting in only one high steady state
for RhoA (same as WT Abr overexpression for the RhoA-Abr module). Furthermore, as k8 decreases and k3
increases, the intersections of the rates of activation and inactivation of Cdc42 result in only one high steady
state due to the increasing GEF activity of the Abr. However, for this modest decrease in k8 and increase in k3,
the model is capable of capturing the experimental result [5] that both zones broaden. we have assumed in our
model.

S6.4. Validation: C3 exotransferase inhibited RhoA. The effects of C3 were represented by setting the
RhoA activation terms kr0 and k1 to be 30 % of their values in the control simulation. The simulation results are
in Fig. 6D. The bottom panel shows that the RhoA nullcline is translocated downwards and scaled, resulting
in only one stable steady state for RhoA. Without much active RhoA, there is very little Abr and the Cdc42
rates of inactivation and activation intersect in different places. Specifically, the low steady state is lower and the
high steady state is higher, resulting in a more intense zone as in experiments [15]. Even though the threshold
value during the inhibition of RhoA in our model is not significantly different from the controls, our model still
captures the broadening of the Cdc42 zone that was observed in experiments [15] simply because the Rho zone
is no longer present to suppress it in that region.

S7. Two-wound simulations

Here we consider the case of two wounds whose edges are a distance L apart. We ask how pattern dynamics
depend on L. We ignore the effects of advection and wound closure, and simulate Model 3 in two dimensions
by triangulating the geometry and using a finite volume method in a Python package FiPy [16]. For G = Abr,
Rho, and Cdc42, the evolution of the concentrations is governed by the reaction-diffusion equations:

∂[G]

∂t
= D∆[G] + fG({[Gk]}) for x ∈ Ω, t > 0,

∂[G]

∂n
= 0 in ∂Ω,

where Ω is the swiss-cheese shaped region from the two wounds and n is the outward normal vector to the
boundary. As before, we impose no flux boundary conditions at the wound edge. The no flux boundary
condition in the far field is used as an approximation. The kinetics functions and parameter values are taken
directly from our default single-wound simulations. The initial stimuli at each wound are similar to the 1D
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simulations, but were slightly modified to qualitatively yield a Rho and Cdc42 zone in a single-wound scenario.
By approximating the system by neglecting advection, closure of the wound, and Diriclet BCs, a different initial
condition was required to yield the same qualitative behavior as the simulations in Fig 5C. Between the wounds,
we assume that the stimuli are additive when they spatially overlap. If the wounds are close, the stimuli will
overlap. If they are far away, the stimuli do not overlap.
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S8. No-flux boundary condition derivation

Here, we derive the no flux boundary condition at the wound edge, which is complicated by the moving
boundary. Intuitively, the boundary is moving at the same rate as the advection at the wound edge, so the end
result should be that the radial derivative is zero at the wound edge. Let u(r, t) be the concentration of one of the
proteins. Consider the radial axis as the top-down view of the surface of the cell with the wound at the center.
We have the wound location as r = w(t) and it changes with time according to w′(t) = −v(w(t)), where v(r) is
the velocity towards the wound center. The conservation equation governing each species u that is attached to
the membrane is:

(13)
∂u

∂t
=

1

r

∂

∂r

(
rD

∂u

∂r
+ rvu

)
+ f(u).

The reaction term f(u) will also depend on other chemical species, but the extension to multiple species is trivial.
We use the Rankine-Hugoniot jump condition [17] to have no flux across the wound edge by defining u(r, t) ≡ 0
for 0 ≤ r < w(t) and treating the wound edge as a moving discontinuity. Integrating Eqn. 13 over the spatial
domain r1 < w(t) < r2, we have:

(14) 2π
∂

∂t

∫ r2

r1

rudr = 2π

∫ r2

r1

∂

∂r

(
rD

∂u

∂r
+ rvu

)
dr + 2π

∫ r2

r1

rf(u)dr

Splitting the integral on the left into two and evaluating the first integral on the right:

(15)
∂

∂t

(∫ w(t)

r1

rudr −
∫ w(t)

r2

rudr

)
=

(
rD

∂u

∂r
+ rvu

) ∣∣∣∣r2
r1

+

∫ r2

r1

rf(u)dr

Accounting for zero amount of u in 0 ≤ r < w(t), this integration reduces to:

(16) −
∫ w(t)

r2

rutdr − w(t)w′(t)u

∣∣∣∣
w(t)

= Dr2
∂u

∂r

∣∣∣∣
r2

+ r2vu

∣∣∣∣
r2

+

∫ r2

r1

rf(u)dr.

Finally, we take the limit as r1 → w(t)− and r2 → w(t)+, causing the integral of the reaction term and
the first integral above on the left hand side to vanish since the integration is over an empty interval. Using
w′(t) = −v(w(t)), we arrive at our no flux boundary condition:

(17) w(t)vu

∣∣∣∣
w(t)

= Dw(t)
∂u

∂r

∣∣∣∣
w(t)

+ w(t)vu

∣∣∣∣
w(t)

,

or ∂u
∂r = 0 at r = w(t).

S9. A change of variables to solve a moving boundary problem

The coupled reaction-diffusion-advection system contains a moving boundary that is treated as stationary
using a coordinate transformation. Far away from the wound, which we treat as a far field, we have that the
proteins are at their basal, low steady state values, u(∞, t) = uSS . At the wound edge r = w(t), we have no-flux
boundary conditions. We change from a moving coordinate to a fixed coordinate by the transformation

(18) ψ(r, t) := r − w(t)

so that r = w(t) corresponds to ψ = 0 and we still have a far-field in ψ. ψ is the shortest distance of a point on
the surface to the wound boundary. This change of coordinates leads to a fixed coordinate system. By the chain
rule:

∂

∂t
=

∂

∂t
+
∂ψ

∂t

∂

∂ψ
,
∂

∂r
=
∂ψ

∂r

∂

∂ψ
(19)

and Eqn. 18 gives that ∂ψ
∂t = −w′(t).

In rewriting Eqn. 13 in terms of the the radial coordinate with the function form of the velocity as vr(r) = vc
r ,

we get

(20)
∂u

∂t
=

1

r

∂

∂r

(
rD

∂u

∂r
+ vcu

)
+ f(u),

and transform into the new variables (ψ, t), to get a PDE for û(ψ, t):
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∂û

∂t
= D

∂2û

∂ψ2
+
∂û

∂ψ

(
w′(t) +

D + vc
ψ + w(t)

)
+ f(û),(21)

∂û

∂ψ
(0, t) = 0, û(∞, t) = uSS .

This characterizes a system on the static ψ domain. For plotting purposes, after the above system is solved,
we can plot in the r coordinates using r = ψ + w(t).

S10. The numerical method

Finite difference methods are used to solve the PDE system. The Laplacian operator is treated implicitly in
time, upwinding is used for the advection terms, and the reaction terms are treated explicitly. We approximate
the far field by ψ = 50 µm, a large distance from the wound. Given a set of parameter values, we solve for the
steady states and set the far-field condition as the low steady state GSSlow solution. At each time step, we compute
v according to its prescription, and then update the position of the moving boundary using w′(t) = −v(w(t)).
Upon resolving each the spatial and temporal time steps, we find no significant distinction between solutions.
We use MATLAB for all simulations, except for the FiPy package in FiPy that is used for the two-dimensional
simulations of two wounds.

Details: let ukj be the approximation to û(ψj , tk) for tk := k∆t and ψj := j∆ψ where ∆t and ∆ψ are the time
and spatial steps, respectively. Our discretization scheme is then:

(22)
uk+1
j − ukj

∆t
= D

uk+1
j−1 − 2uk+1

j + uk+1
j+1

(∆ψ)2
+
uk+1
j+1 − u

k+1
j

∆ψ

(
vc +D

ψj + w(tk)
+ w′(tk)

)
.

Handling of the boundary conditions: no flux =⇒ u−1 = u1. Dirichlet condition the far field =⇒ uN = uSS

where ψN is the truncation location for approximation of the far-field.

S11. Scaling the intensity data for comparison to simulations

From each intensity point, we first subtract the background level, which we take as the average over time of
the intensity at the pixel value furthest from the wound. We then scale the RhoA intensity by the amplitude
of [R∗]SShigh + [AR∗]SShigh − ([R∗]SSlow + [AR∗]SSlow) and adding [R∗]SSlow + [AR∗]SSlow to it to adjust for the background

levels. We scale the Cdc42 intensity by [C∗]SShigh − [C∗]SSlow and add [C∗]SSlow to it to adjust for the background
levels.
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